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An on-lattice Monte Carlo model is implemented for the simulation of particle deposit growth by advection
and diffusion towards a flat surface. The particle deposit structure is characterized by its bulk �density� and
interface �mean height and surface width� properties. Numerical correlations, fitted by simple expressions, are
reported for these magnitudes, relating them to time �number of deposited particles� and Peclet number. Also
a heuristic argument is presented which relates deposit density to local diffusion-limited-aggregation-like
processes and interfacial dynamics to the KPZ model.
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I. INTRODUCTION

In particle-laden gas streams, the particles suspended in
the gas can be driven towards neighboring walls by different
mechanisms such as inertia, convection, diffusion, and gravi-
tational or phoretic forces, leading to the formation of par-
ticle deposits on these surfaces exposed to the stream. In the
range of very small particles, inertia plays no role and the
particle motion can be split into two contributions �1–4�. A
deterministic mean particle velocity is associated with con-
vection �the velocity of the surrounding gas� as well as to the
existence of external forces—for instance, buoyancy, ther-
mophoresis, or photophoresis. Moreover, there is a second
contribution linked to the particle Brownian motion. This
motion corresponds to a random walk of the particle which,
averaged �over the ensemble of particles at each location in
the gas�, is the cause of the Brownian diffusion flux. In the
vicinity of the surfaces exposed to the gas, this combination
of deterministic motions and/or random walk may take the
particles to the surface, leading to the formation of particle
deposits. The aim of this work is to relate the deposit mean
morphological features to the mechanism of particle arrival
to the deposit �5,6�: indeed, to the relative importance of the
deterministic particle motion �mean particle velocity� to the
random �Brownian� particle walk. Thus, the deposit proper-
ties will be analyzed as a function of the Peclet number
which measures the relative importance of these two mecha-
nisms.

In the absence of inertia, particles in a gas reach a mean
terminal velocity V corresponding to the balance of forces on
them �viscous drag and external-phoretic forces�. This veloc-
ity together with the Brownian motion characterized by a
diffusion coefficient D gives the following expression for the
particle number flux density jc:

jc = Vc − D � c ,

where c�x , t� is the number of particles per unit volume at
position x and time t.

Applying the conservation equation for the particles and
assuming that both the phoretic force and the diffusion con-
stant D remain constant within the region of interest, the
following evolution equation is obtained:

�c

�t
+ �V · � �c − D�2c = 0. �1�

We will restrict the analysis to the particle behavior in the
very vicinity of the walls where the terminal velocity reaches
a limiting constant value. There, rescaling the distances with
a characteristic length a and expressing the time in units of
�=a /V �where V= �V� is the characteristic particle velocity�,
Eq. �1� becomes

Pe� �

�t
+ V̂ · ��c − �2c = 0, �2�

where V̂ is the unit vector along the direction of V and Pe
stands for the Peclet number,

Pe =
Va

D
. �3�

Therefore, Pe measures the relative importance of the deter-
ministic particle motion to the nondeterministic particle ran-
dom walk. Equation �2� for the particle number density cor-
responds to the Fokker-Plank equation for an ensemble of
particles moving in a stochastic manner, assuming dilute
conditions—i.e., lack of interaction �e.g., hydrodynamic�
among them.

It is well known that in the limit case of Pe→0 �purely
diffusive particle motion in the absence of drift� the gener-
ated particle deposits grow with the fractal structure of the
diffusion-limited aggregation �DLA� model �7,8�. Moreover,
DLA aggregates grown in a d-dimensional space have a frac-
tal dimension approximately given by DDLA��d2+1� / �d
+1� �9,10�. This value varies not only with the dimension d
of the embedding space, but also with its topological struc-
ture; for instance, it is slightly larger for off-lattice grown
aggregates and slightly smaller for aggregates simulated on
square or cubic lattices �11� �although this effect is only ob-
servable for very large aggregates�.

On the other hand, for Pe→� �negligible diffusion�, the
ballistic deposition model applies �12�, the deposits being
compact and having a rough interface. The inner structure of
these deposits is well described as a fat fractal, with pores
distributed according to a power law �10�. Also, the interface
is a self-affine fractal �10,13�. The interfacial width, defined
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as the interface roughness characteristic length �see Eq. �9�
below for the definition used in this paper�, evolves with
time according to a Family-Viksec scaling �13–15�

w 	 t�f� t1/z

L
� , �4�

where f�x� is a function such that f�x�1�	1, whereas f�x
�1�	x−�. The saturation effect described by f�x� can be
explained by the propagation of the horizontal correlation
length �
 according to �
 	 t1/z while limited by the system
size L. The exponent � �roughness exponent� is expressed in
terms of the exponents � �growth exponent� and z �dynamic
exponent� as �=�z, which is derived from the existence of a
steady limiting value of w for long times, induced by finite-
size effects �finite value of L�.

The ballistic model is considered �12� to belong to the
KPZ universality �16� �with �KPZ=0.33 and �KPZ=0.5 for
d=1+1—i.e., deposition on a line—and �KPZ=0.25 and
�KPZ=0.33 for d=2+1—i.e., deposition on a surface�. Sev-
eral other ballisticlike models can be found in the literature
which show how robust this universal KPZ behavior is when
variants of the ballistic model �with modified deposition flux,
particle relaxation via surface diffusion, or mixture of stick-
ing and non sticking particles �17,18�� are considered. All
these models keep the assumption of nearest neighbor tran-
sition rules, growth being led by local interactions. The pres-
ence of a diffusive component in the motion of the deposit-
ing particles, as described in the previous paragraphs, raises
the question of wether this diffusive “disturbance” would
keep the universal KPZ behavior.

The relationship between the particle phoretic mechanism
�Pe number� and the properties of the formed deposit �inter-
face, density, pores distribution� has been already pointed
out, in the context of filter cake formation, using Monte
Carlo simulations with off-lattice �5� and on-lattice methods
�6�. Continuum �off-lattice� simulations are computationally
expensive �due to the intrinsic nonlocality of the rules�, and
some properties are cumbersome to define �for instance,
pores, interface�. Moreover, the simulation intrinsic geo-
metrical complexity forbids the use of large numbers of par-
ticles, thus being limited by finite-lattice-size effects. On-
lattice simulations are easier to implement and faster to run,
but they are not so realistic as the former ones �they have, for
example, limited coordination number�. However, some mor-
phological properties that characterize large scale features
�like the ones studied in �5,6,19� and in this paper� are kept,
at least qualitatively, through the space-time discretization
process �20�.

Recently, lattice-Boltzmann methods have been used to
simulate particle deposit formation on filter fibers, taking
into account locally induced inhomogenities of the flow field
�19�. However, this approach is not necessary when consid-
ering more uniform motions, like the one described here,
where convection due to the fluid is negligible �case of
phoretic forces inside a Brownian boundary layer �6�� or can
be accounted for as a uniform contribution to V �as is the
case in the context of filter soot cake formation, studied
in Ref. �21��.

Some of the previous works were aimed at determining
the effects of the deposit on the flow �19,21�. However, in
other cases, the interest may be focused on bulk structure
�e.g., fabrication of optical wave guides or coating by means
of vapor deposition� or its adhesion or chemical interaction
with the wall �fouling and corrosion in, for instance, heat
exchangers� or the microscopic structure of the interface of
the deposited material �e.g., catalyst �22�; see also �23� for an
analogy between this sort of deposition models and particle
inhalation and its inflamatory effects on the respiratory func-
tion�. The study of the deposit mean features requires an
statistical �micro�geometrical description of the deposition
process, as used in fractal characterization.

The objective of this paper is to introduce a general
method to perform discrete on-lattice Monte Carlo simula-
tions of small particle motion and deposition with the as-
sumptions described before and to study the relationship be-
tween the deposition mechanism �specified by the Pe
number� and the relevant characteristics of the deposit bulk
�described by the mean and local densities� and interface
�described by its correlation lengths�. Compact numerical ex-
pressions will be sought for from the simulation results in
order to identify the principal mechanisms involved in de-
posit structure formation.

II. METHODS

The method employed in this paper is an on-lattice dy-
namical Monte Carlo simulation, similar to those used in
�5–7�. Time will be discretized into fundamental time inter-
vals �. The space will be also divided in cubic cells of side
a=1 �this will be taken as the characteristic length for the
definition of Pe�. Each cell can hold either fluid �empty cell�
or one particle �filled cell�; therefore, a is also the character-
istic particle size. The bottom boundary of this lattice repre-
sents the wall where the particles deposit. At a given upper
level the particles are being introduced at random locations
and their trajectories being tracked down until they either
reach the growing deposit or they move far away and are
considered blown by the stream.

The particle motion is simulated using a dynamical Monte
Carlo scheme. During a time interval � the particle will un-
dergo two consecutive stages: a ballistic stage and a diffusive
stage �Fig. 1�a��. During the ballistic stage, the particle
jumps once in the direction pointed to by the mean determin-
istic velocity �“downwards”�. Moreover, during the diffusive
stage, the particle performs n random walk steps, n being a
positive or null integer which depends on the Peclet number
Pe. This scheme is chosen to ensure the isotropy of the par-
ticle diffusion in the lattice. Previous analyses which in-
volved convection �5,6� did not fulfill this requirement and
may lead to spurious effects on deposit formation. A Monte
Carlo simulation with a single step is not possible for all
ranges of the Peclet number �as we shall see in Sec. IV�. The
combination of a nonvanishing mean particle velocity and a
random walk �with isotropic diffusion� requires the use of
different probabilities of particle jumps on the different lat-
tice directions. For some values of the Peclet number, the
one-step Monte Carlo model leads to a negative probability

RODRÍGUEZ-PÉREZ, CASTILLO, AND ANTORANZ PHYSICAL REVIEW E 72, 021403 �2005�

021403-2



for particle jumps in the direction opposed to the mean flow.
The use of the two-stage Monte Carlo model, with a ballistic
step followed by n random steps, avoids the existence of
negative probabilities while ensuring the isotropy in the par-
ticle diffusion.

According to the definition of the first stage, the mean
particle velocity relates the time and space discretizations by
V=a /�. Hence the value of the fundamental time interval � is
fixed by the Monte Carlo scheme.

To determine n, we consider that for a random walker in a
d-dimensional space �i.e., a particle that may jump from its
cell to any of its neighbors with equal probability pD or stay
at its current location with probability 1−2dpD� the position
variance after n steps becomes

�2dpD�na2 = 2dD� , �5�

which is the Einstein’s relation linking particle position vari-
ance to time � and diffusion coefficient D. Substituting in
Eq. �5� the expression �3� for the Peclet number, the value
n= �pDPe�−1 is obtained. Obviously, the use of this relation
with a maximum symmetric jump probability pD=1/2d will
restrict the simulation to values of the Peclet number which
provide an integer value of n. To overcome this difficulty, a
nonjump probability p0 has to be introduced. In this way n
can be fixed and pD evaluated afterwards. Let us take

n = int�2d

Pe
+ 1� �6�

�by int�x� we denote the integer part of x�. Then we get for
the jump probability �the same for every neighbor cell irre-
spectively of the orientation of the mean particle velocity�

pD =
1

nPe
�

1

2d
,

thus remaining a nonjump probability �probability of remain-
ing at the same position�

p0 = 1 − 2dpD 	 0

in each of the n random walk steps of the diffusive stage.
Particle motion starts at the level “one cell over the top-

most particle in the deposit” but at a random horizontal lo-
cation. The number of diffusive jumps in the first Monte
Carlo step �the first � seconds� of every particle motion is
chosen at random between zero and the maximum number of
diffusive jumps, n, for the simulated Peclet number, given by
Eq. �6�. The motion of a particle ends when it “touches” the
surface of the wall or the deposit �Fig. 1�b��. To avoid seek-
ing the state of all nearest-neighbor cells, the active site
bookkeeping algorithm is used �7�. A particle motion is then
stopped whenever it enters an active cell; this cell will be-
come filled and all of its empty neighbors labeled as new
active cells �solid grey cells in Fig. 1�c��.

It is known that, as the deposit grows, long-range corre-
lations propagate through its interface. This is responsible for
the appearance and propagation of border effects when the
surface is considered bounded, and free or nonfree condi-
tions are assumed on those boundaries. It is also responsible
for the modification �increase and saturation� of the rough-
ness when measured over small regions of the interface �this
effect leads to the Family-Viksec scaling ansatz �14��. To
avoid the first effect and to decrease the latter, periodic
boundary conditions are assumed along the directions paral-
lel to the wall and the lattice base size L is chosen large
compared to the maximum height correlations which may
appear during the deposit evolution.

Computer experiments

The two-stage Monte Carlo scheme just described is used
for three-dimensional �3D� simulations on a cubic lattice
with square bases of side L=400a �for the bulk characteriza-
tion� and L=512a �for the interface characterization� and pe-
riodic lateral boundary conditions. The range of Pe numbers
considered varies from 0.1 to 1000. Values will be taken to
be logarithmically spaced to have representative sampling of
the parameter space �deposit structure varies slowlier with Pe
the larger the Peclet number is�.

To estimate the reproducibility of the numerical results we
compute standard deviations over 10 �for the bulk character-
istics� or 30 �for the interface� individual simulations. For
those parameters obtained by regression, standard errors will
be used as uncertainty estimations.

III. RESULTS

The structure of the deposits has been characterized nu-
merically by macroscopic properties of their surface and
bulk: bulk density, both average and microscopic, and inter-
facial correlations, both horizontal and vertical �i.e., growth
interface width�.

A. Density

The simplest way to characterize the bulk of a deposit is
through its density profile �5�. For a given time, the density

FIG. 1. Particle motion and deposition model over a wall �at the
bottom�. Particle moves applying two alternating rules �mean ve-
locity and difussion�: a deterministic jump towards the wall, fol-
lowed by n random walks �a�. The particle moves until it reaches a
cell labeled as active �open squares in �b��; the particle sticks there
and marks this cell as occupied and every empty nonactive neighbor
cell as a new active cell �solid grey cells in �c��.
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profile 
�h� is the function representing the fraction of occu-
pied cells at a given height h,


�h� =
N�h�
L2 ,

where N�h� is the number of deposited particles at height h
over the wall. Some density profiles are shown in Fig. 2.

This density depends on the height inside the deposit h as
well as on the Peclet number Pe. It is higher near the wall,
decreases to a plateau value 
̄ for intermediate heights, and
then decreases to zero in the upper areas where new particles
are still arriving �the active zone�. The existence of the pla-
teau �5,6� is due to the fact that, some time after deposition
begins �earlier the higher the Pe is�, a part of the deposit
becomes “frozen” so that no more particles penetrate that
region which remains with a fixed density 
̄.

The initial deposition stages �thus, lower heights� are af-
fected by the presence of the rigid wall and a higher deposit
density is reached there. This initial boundary effect is gen-
erally observed in deposition and growth experiments as
those recently illustrated by Yu et al. �24� using scanning
electron microscope �SEM� images. Quoting these authors,
the porous structure is due to the penetration of the arriving
particles through the pores of the deposit, which gives a uni-
form density �the “plateau” in our simulations� which de-
pends on the preferential landing of the particles �the diffu-
sive component in our model enhances deposition on the
tips�. When the substrate is not the porous deposit, this pen-
etration is not possible and the particles form a more com-
pact structure as is seen in the microphotographs of Yu et al.
and in the lower parts of our simulations. Beyond the initial
influence of the wall a constant value of 
̄ is attained which
is characteristic of the deposit growth mechanism.

In the plateau region 
̄�Pe� is an increasing function of
Pe, going from very low values in the diffusion-dominated
particle deposition limit 	0.05 for Pe=0.1, to a maximum
value of about 0.3 for pure ballistic particle deposition �Pe
→��. We find �see Fig. 3� that it is possible to fit 
̄�Pe� to
the expression


̄�Pe� = 
̄����1 +
A


Pe
�−D

, �7�

with A
�4.8 and D�0.52, with 
̄����0.302, the value of

̄�Pe→��, corresponding to a ballistic deposit mean density
�all decimal figures are significative within the fitting inter-
val, giving values which differ from the numerical simula-
tion averages in less than 1%�.

Expression �7� for 
̄�Pe� becomes zero as Pe→0. This is
expected from the DLA limit of our model, because for a
vanishing Peclet number, the deposit structure becomes frac-
tal �whose average density is zero�. However, due to finite-
size effects of the simulations, this zero-limit average density
will not be reached. Instead the density of the plateau region
achieves a minimum value which decreases as the deposit
horizontal length �L� increases. We have taken this into ac-
count and checked �comparing the results from smaller and
larger lattices� that, for the range of Peclet numbers simu-
lated, these effects are unimportant. In the discussion �Sec.
IV� we will give a criterium to find the minimum lattice size
which allows to simulate the inner structure of a deposit in
terms of the Peclet number describing the motion of the par-
ticles used to grow it.

B. Local density scaling

To characterize the inner structure of the deposit, a box-
counting approach was used to study the scaling of the “local
density” 
̄���, defined as the mean mass-to-volume ratio in a
box of size �:


̄��� 	 
mass within a box of size �

volume of a box of size �
� .

Here the average corresponds to positions inside the frozen
region of the deposit �the “plateau,” in the density profile
plot�. We compute the number of boxes of a given size �
needed to cover all the particles in that region of the deposit
and then the mean particle density in these boxes. Due to box
size discretization, some boxes will be only partially within

FIG. 2. Deposit density, 
, vs. height, h, for Pe=0.1, 1.0, 10,
100, for deposits of 5�106 particles.

FIG. 3. Plateau density dependence on the Peclet number 
̄�Pe�.
Squares represent the values obtained from averages over ten simu-
lations; error bars are not shown �relative errors remain smaller than
10−3�. The line corresponds to the fitting expression �7�.
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the region of study �the “plateau”�—i.e., only N� of their �3

cells will be inside the studied region. To achieve smoother
results, these boxes will be counted with a weight of N� /�3.

All box-counting plots show an initial common region for
small values of � �visible for Pe�1� in which their scaling
behavior looks the same as that observed for DLA clusters
�seen in Fig. 4�. For larger box sizes �larger the smaller the
Peclet� the local density saturates to the mean deposit den-
sity.

C. Interface width

Deposit interface can be characterized by the statistical
description of the active region �the interface where growth
is taking place at a given moment�. This is usually done �see
�10,12,13�� in an operational way, by giving the mean height
of newly deposited ballistic particles �i.e., with Pe→��,
which corresponds to the average height h̄ of the topmost
active sites over each of the L2 lattice square base sites,

h̄ =
1

L2 �
i

L�L

hi, �8�

and the interface width which is taken as the typical devia-
tion of the ballistic probe particle arrival heights w also com-
puted from the topmost active site distribution:

w2 =
1

L2�
i

�hi − h̄�2. �9�

A generalization of this approach is to define a Peclet-
dependent mean height and width computed using probe par-
ticles whose motion is the same as that of the depositing
particles building up the deposit. We will denote these quan-

tities h̄Pe and wPe, respectively, with a subscript Pe to em-
phasize that they are computed using probe particles moving
according to the algorithm just described at the beginning of
this section, for the given Peclet number.

To describe horizontal correlations for an interface de-
fined by the height function h�x�, a correlation length �
Pe

can be computed �15� based on the height-height correlation
function

�h,Pe�x� = ��hPe�x0� − h̄Pe��hPe�x0 + x� − h̄Pe��x0,

where the product is averaged over the horizontal coordi-
nates x0 of the reference points. We will use as �
Pe the mean
decay length of �h,Pe�x� given by �15�

�
Pe =
� �h,Pe�x�xdx

� �h,Pe�x�dx

.

The evaluation of �
Pe will be carried out using a Monte
Carlo sampling of points, as for wPe.

In the following we present results describing the long-
time �i.e. scaling behavior� evolution of the active region
interface. To describe the temporal evolution of �
Pe and wPe,
we have taken as natural time the unit TL�L, the inverse of
the particle arrival rate per unit surface, given in terms of the
particle flux density normal to the wall, jw ·n, and by the
average projected area of a particle, a2, as TL�L
= �jw ·na2�−1.

The true value of this time unit depends on the value of jw
determined by the fluid dynamics solution of the particle
distribution in the flow field surrounding the deposition wall.
That solution can be computed as in �3� with the usual
boundary conditions for the flow velocity at the wall and
assuming there a perfectly absorbing boundary for the par-
ticle concentration. In our simulations, TL�L corresponds to
the time needed to deposit as many particles as cells are in
the lattice base—i.e., L2 �hence the notation�. This allows us
to use a lattice-size-independent time t, while the physical
time can be recovered as tTL�L.

D. Horizontal correlations

The horizontal correlation length �
Pe shows a small initial
transient. When �
Pe becomes large enough �larger than 4a� a
power-law region begins,

�
Pe = A�t
1/z, �10�

spanning a variable-time interval �up to values of �
Pe around
30a�. We will use this range as the fitting region to estimate
the growth exponents. Later on, �
Pe starts to oscillate due to
increasing sample variability and saturation.

This exponent z−1 is analogous to that appearing in the
expression of the Family-Vicsek scaling ansatz �4� although
its saturation effects are not yet observable in our simula-
tions. Some plots used for its estimation are shown in Fig. 5
and some estimates are recorded in Table I and represented
in Fig. 9, below, for several Pe values.

E. Long-time wPe evolution

For long times, after a short initial transient, a power-law
behavior for wPe is observed,

FIG. 4. log 
̄�� ,Pe� vs log �, for Pe=0.05, 0.1, 0.2, 0.5, 1.0, 10.
Horizontal lines represent the asymptotic mean density, as given by
Eq. �7�. Also shown are the results of applying the same box-
counting method to a DLA aggregate grown inside a 400�400
�400 box.
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wPe = Awt�, �11�

with the exponent � varying from 0.220±0.003 for Pe
=1000 to about 0.272±0.005 for Pe=0.5. Regressions were
performed within the region where 4��
Pe�30, as in the
previous case. The exponent � corresponds to the initial
power-law growth described by expression �4�. Some plots
used for its estimation, corresponding to different Peclet
numbers, are shown in Fig. 6 and the obtained values are
given in Table I and plotted in Fig. 9, below.

F. Self-affine characterization

To characterize the vertical to horizontal correlation de-
pendence of the active region, wPe was represented against
�
Pe. A power law was obtained, in the form

wPe 
 �
Pe
� , �12�

with the exponent � varying from 0.366±0.012 for Pe=20,
to about 0.415±0.017 for Pe=0.5. Regressions were per-
formed within the region 4��
Pe�30, as before. Some plots
used for the estimation of � are shown in Fig. 7. Moreover
the exponent � is given in Table I and also in Figure 9,
below, for several values of the Peclet number Pe.

IV. DISCUSSION

In previous works �23,25� a single stage Monte Carlo
model �directly inspired in �6�� was used. There, the jump
probabilities p±i �i corresponds to the direction and a + or −
sign indicates forward or backward jump; deterministic ve-
locity is assumed along the “−z” direction� were assigned
subject to the conditions

p+i − p−i = pDPe�i,

p+i + p−i = pD�2 + pDPe2�i
2� ,

�
i

�p+i + p−i� = 1,

with pD given by Eq. �5� assuming n=1, �i=−1 for i per-
pendicular, and �i=0 for i parallel to the depositing sub-
strate. This model introduces different probabilities in the
two senses along the direction defined by the mean particle
velocity to ensure an isotropic particle diffusion. However, it

FIG. 5. Long-time horizontal correlation length �
Pe evolution
for Pe=0.5, 1, 5, 10, 100, 1000. Shown as solid lines are the fittings
to expression �10�.

TABLE I. Long-time scaling exponents for several Peclet num-
bers � �roughness exponent�, � �growth exponent�, and z �dynamic
exponent�.

Pe � � z−1 z

0.5 0.415±0.017 0.272±0.005 0.655±0.018 1.53

1.0 0.409±0.012 0.249±0.005 0.616±0.018 1.62

5.0 0.403±0.015 0.251±0.005 0.622±0.023 1.61

10 0.385±0.013 0.242±0.004 0.624±0.017 1.60

100 0.371±0.015 0.223±0.005 0.600±0.019 1.67

1000 0.370±0.009 0.220±0.004 0.602±0.016 1.66

FIG. 6. Long-time active region width wPe evolution for Pe
=0.5, 1, 5, 10, 100, 1000. Shown as solid lines are the fittings to
relation �11�.

FIG. 7. Active region width vs horizontal correlation length for
Pe=0.5, 1, 5, 10, 100, 1000. Solid lines correspond to expression
�12�.
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has the drawback of being valid only for Pe�Pemax=2�d
−1� / �d−2�. Above this Pemax �Pemax=4 for 3D simulations�,
an unphysical negative value is obtained for the ascending
probability. To avoid the use of a negative probability, the
conditions for the random numbers generated in the simula-
tion were evaluated first in those directions where no nega-
tive probabilities arose and then along the falling direction
�25�.

The results presented in this work coincide �within statis-
tical error bars� with those obtained with the previous model
not only within its region of applicability, but also for Pe
	4. The reason is that, for high Peclet number, the main
contribution is ballistic, and ascending probability can be
neglected; it can be assumed that, whenever a vertical jump
happens, it will be descending with probability p+=1−2�d
−1�pD.

Anyway, the two-stage Monte Carlo simulation used here
�with a deterministic step and n random walk steps� elimi-
nates this negative probability and avoids the appearance of
spurious effects for large-Peclet-number simulations.

The characteristic density of the deposit, given by Eq. �7�,
reproduces a power law for low values of Pe �as was noted in

�6� through the measurement of the mean height h̄�. The
prefactor 
̄��� corresponds to the density of a purelly ballis-
tic deposit, 
̄�Pe→���0.302, and the exponent of the
power law is D=0.52. Moreover, the coefficient A
 is of
order unity �A
�4.8� and represents the crossover Peclet
number between power-law behavior and ballistic saturation.
As was pointed out in �25� �where an analogous result was
observed for 2D simulations� D is numerically close to d
−DDLA, d being the dimension of the space and DDLA the
fractal dimension of a DLA aggregate.

To explain this numerical coincidence, we rescale the
time-independent version of Eq. �2� with a characteristic
length l�a,

�zc +
1

l
Pe−1�2c = 0

�here, l does not need to be an integer�. This expression
describes the quasistationary distribution of particles near the
deposit interface. We observe that, for scales where Pe−1 / l
�1, the diffusive term becomes dominant, while for Pe−1 / l
�1, it is negligible. There must exist a length scale l0a,
given by the condition l0	Pe−1, such that the particle behav-
ior can be considered diffusive for scales below l0 �and frac-
tal structures should arise at those scales� and ballistic for the
scales above �and correspondingly, structures will be com-
pact�.

Therefore, the numerical correlation given by Eq. �7� can
be interpreted as a Pe limitation to the size of DLA-like
structures that produces a mean density similar to that of
“small DLA fractals” of size �1+A
 /Pe��a �here we have
added a length a to ensure a minimum aggregate size of one
cell�.

An argument similar to this was already proposed by
Meaking �26� in the context of DLA growth with biased
probabilities.

In order to check this local fractality model, the results in
Sec. III B can be used to find a fractal dimension of the
deposit bulk through the usual box-counting algorithm.

First of all, we seek a power-law expression fitting the
values obtained for small boxes—that is, in the common
scaling region. The power-law behavior of the box-counting
plot is expected to hold in a range of box sizes large com-
pared to one cell �and small compared to the deposit size�.
Therefore we will need to use a modified expression to re-
cover a power law for the small boxes we are interested in.
To obtain a power law for a DLA fractal box counting using
boxes with fewer than 10�10�10 cells, the following “cor-
rected” expression may be used:


̄��� = 
1 � �� − �0�−D, �13�

where 
1�0.140±0.005, D=−0.560±0.005, and �0
=2.37±0.06 is taken so that fitting residual rms, for 4��
�40, is minimum �this implies neglecting measures with
boxes smaller than three cells wide�. The value of 
1 repre-
sents the power prefactor extrapolated from the large-box
behavior—that is, from the region where the power law does
not depend on �0. The exponent D=DDLA−d gives the esti-
mate DDLA�2.44.

Deposits grown with Pe�1 follow approximately the
same power law, until the density given by Eq. �7� is attained
�shown in Fig. 8�. Therefore, particle deposits are DLA-like
fractals up to a scale 	1+A
 /Pe and simply porous above
that scale.

This local fractality interpretation is useful when choosing
the size of a simulation in order to avoid finite-size effects in
the estimation of, for example, the plateau density. The mini-
mum Pe that could be reliably simulated in a box of size L
would be Pemin=A
 / �L−1�; for our simulations where L
=400a , Pemin�0.012. For lower values of Pe, the measured
density will be higher than predicted by Eq. �7� and it will
show a stronger dependence on L than on the Peclet number.

The power-law exponent of −0.56 does not concide ex-
actly with that expected from the mean density fitting, −0.52.
This discrepancy probably means that other limiting effects

FIG. 8. log-log plot �base 10� of 
̄�� ,Pe� vs �, showing the
gradual departure from the DLA power law �Eq. �13�, shown as the
oblique line� for increasing Pe=0.05, 0.1, 0.2, 0.5, 1.0, 10.
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apart from the convective ones accounted for in our heuristic
model need to be considered.

For Pe	1, no initial power-law region can be resolved
using this box-counting procedure because we have ne-
glected very small boxes in order to get better fit in a wider
power-law region. However, it can be seen from the average
densities that Eq. �7� is still valid, suggesting that the same
mechanism is still operating.

The active region scaling is described by the exponents �,
�, and z appearing in expressions �4� and �10�–�12� com-
puted from the results shown in Figs. 5–7. Some values of
these exponents are quoted in Table I and summarized in Fig.
9. We have employed in this paper the usual notation for the
dynamic exponent z; however, we give the value of z−1 be-
cause this is the exponent directly computed from the fitting
to expression �10�.

Due to the small number of simulations �30 for each Pe-
clet number�, 10%-trimmed averages have been used to dis-
card outliers �values far from the average�. Standard errors
have been obtained through a bootstrap method with 1000
subsamples �27�.

The exponent � was estimated by means of linear regres-
sion for each Peclet number after averaging the time evolu-
tion of wPe over 30 simulations. The regularity observed sug-
gests a characteristic value around 0.24±0.02. In fact, it falls

between the ballistic deposition exponent �BD�0.22 of �28�
and the KPZ exponent �KPZ=0.24 estimated in �29�. The
former value �BD is closer to those values of � obtained for
Pe	10, while for Pe�10, the value of � becomes closer to
�KPZ �see Fig. 9�a��.

The exponent z−1 was estimated in a similar manner. A
characteristic value of z−1=0.61±0.02 is achieved. This
value differs only slightly from the KPZ expected value of
zKPZ

−1 =0.625.
From the wPe vs �
Pe plot, the roughness exponent � can

be estimated. The characteristic value is �=0.38±0.02 which
can also be obtained from the relation �=� /z−1 using the
previous results for � and z−1. As happened for �, the �
estimates for Pe	10 fall nearer the ballistic deposition result
of 0.366 reported by Aarao Reis in �30� from large ballistic
deposition simulations. For Pe�10, the estimated value of �
is closer to 0.4, which is the KPZ limit reported by �29�. As
can be seen in Fig. 9�b�, the relation �+z=2, characteristic
of KPZ universality, is approximately fulfilled.

From the previous considerations we can say that, within
the range of Peclet number values explored �that is, for Pe
	0.5�, the growth interface scales as KPZ or, at least, it is
within its basin of attraction as happens for pure ballistic
deposition.

V. CONCLUSIONS

We have introduced a Monte Carlo model for the on-
lattice simulation of particle motion in the presence of con-
vection and diffusion which keeps diffusion coefficient iso-
tropic. We have used this model in simulations for the
growth of particle deposits over a planar surface in the pres-
ence of a convective velocity towards the surface and includ-
ing the diffusive behavior of the arriving particles. The rela-
tive importance of the deterministic velocity to the diffusive
transport is measured by the Peclet number.

The numerically obtained macroscopic deposit properties
depend on the Peclet number in a way well described by
numerical correlations for the deposit characteristic density
�7�, local density scaling �13�, and the long-time evolution of
the surface active region—that is, the region where growth
takes place effectively �Eqs. �10�–�12��.

To explain the obtained expressions a heuristic model of
local DLA fractal growth was presented. This heuristic
model is compatible with the observed local density scaling.

The interfacial region has been shown to have a self-
affine scaling of KPZ type, with small influence of the DLA-
like growth or the Peclet number.

Thus, the presented model relates deposit microstructure
to transport mechanisms. It shows how to use transport pa-
rameter variation �namely, the Peclet number� to tune the
porosity and roughness �and, hence, active surface� of the
deposit, while keeping the local bulk and interface fractal
structures between those produced by diffusive processes—
i.e., DLA like—and the overall self-affine KPZ scaling.

The numerical correlations presented in this paper will be
helpful in the description of experimentally obtained particle
deposits under the general assumptions presented in the In-
troduction. Although some of the coefficients given will have

FIG. 9. �a� Long-time growth exponents �, �, and z−1 versus
Peclet number. �b� Value of �+z as a function of Peclet number.
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to be fitted to the observed data �for instance, 
� in Eq. �7��,
the link between functional dependences and the microscopic
description of the structure could be helpful when micro-
scopic characterization techniques are limited. Also, the fail-
ure of the presented correlations to describe the experimental
situations would indicate that some other effects �e.g., sinter-
ing or relaxation� are becoming relevant and should be in-
cluded in the model.
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